MVCC详解及实现原理

MVCC详解及实现原理

前提概要

什么是MVCC?

MVCC在MySQL InnoDB中的实现主要是为了提高数据库并发性能,用更好的方式去处理读-写冲突,做到即使有读写冲突时,也能做到不加锁,非阻塞并发读

什么是当前读和快照读?

在学习MVCC多版本并发控制之前,我们必须先了解一下,什么是MySQL InnoDB下的当前读快照读?

说白了MVCC就是为了实现读-写冲突不加锁,而这个读指的就是快照读, 而非当前读,当前读实际上是一种加锁的操作,是悲观锁的实现

当前读,快照读和MVCC的关系

MVCC能解决什么问题,好处是?

数据库并发场景有三种,分别为:

备注:第1类丢失更新:事务A撤销时,把已经提交的事务B的更新数据覆盖了;第2类丢失更新:事务A覆盖事务B已经提交的数据,造成事务B所做的操作丢失

MVCC带来的好处是?
多版本并发控制(MVCC)是一种用来解决读-写冲突的无锁并发控制,也就是为事务分配单向增长的时间戳,为每个修改保存一个版本,版本与事务时间戳关联,读操作只读该事务开始前的数据库的快照。 所以MVCC可以为数据库解决以下问题

小结一下咯
总之,MVCC就是因为大牛们,不满意只让数据库采用悲观锁这样性能不佳的形式去解决读-写冲突问题,而提出的解决方案,所以在数据库中,因为有了MVCC,所以我们可以形成两个组合:

这种组合的方式就可以最大程度的提高数据库并发性能,并解决读写冲突,和写写冲突导致的问题

MVCC的实现原理

MVCC的目的就是多版本并发控制,在数据库中的实现,就是为了解决读写冲突,它的实现原理主要是依赖记录中的 3个隐式字段undo日志 ,Read View 来实现的。所以我们先来看看这个三个point的概念

隐式字段

每行记录除了我们自定义的字段外,还有数据库隐式定义的DB_TRX_ID,DB_ROLL_PTR,DB_ROW_ID等字段

image

如上图,DB_ROW_ID是数据库默认为该行记录生成的唯一隐式主键,DB_TRX_ID是当前操作该记录的事务ID,而DB_ROLL_PTR是一个回滚指针,用于配合undo日志,指向上一个旧版本

undo日志

undo log主要分为两种:

对MVCC有帮助的实质是update undo log ,undo log实际上就是存在rollback segment中旧记录链,它的执行流程如下:

一、 比如一个有个事务插入persion表插入了一条新记录,记录如下,name为Jerry, age为24岁,隐式主键是1,事务ID回滚指针,我们假设为NULL

image

二、 现在来了一个事务1对该记录的name做出了修改,改为Tom

image

三、 又来了个事务2修改person表的同一个记录,将age修改为30岁

image

从上面,我们就可以看出,不同事务或者相同事务的对同一记录的修改,会导致该记录的undo log成为一条记录版本线性表,既链表,undo log的链首就是最新的旧记录,链尾就是最早的旧记录(当然就像之前说的该undo log的节点可能是会purge线程清除掉,向图中的第一条insert undo log,其实在事务提交之后可能就被删除丢失了,不过这里为了演示,所以还放在这里)

Read View(读视图)

什么是Read View?

什么是Read View,说白了Read View就是事务进行快照读操作的时候生产的读视图(Read View),在该事务执行的快照读的那一刻,会生成数据库系统当前的一个快照,记录并维护系统当前活跃事务的ID(当每个事务开启时,都会被分配一个ID, 这个ID是递增的,所以最新的事务,ID值越大)

所以我们知道 Read View主要是用来做可见性判断的, 即当我们某个事务执行快照读的时候,对该记录创建一个Read View读视图,把它比作条件用来判断当前事务能够看到哪个版本的数据,既可能是当前最新的数据,也有可能是该行记录的undo log里面的某个版本的数据。

Read View遵循一个可见性算法,主要是将要被修改的数据的最新记录中的DB_TRX_ID(即当前事务ID)取出来,与系统当前其他活跃事务的ID去对比(由Read View维护),如果DB_TRX_ID跟Read View的属性做了某些比较,不符合可见性,那就通过DB_ROLL_PTR回滚指针去取出Undo Log中的DB_TRX_ID再比较,即遍历链表的DB_TRX_ID(从链首到链尾,即从最近的一次修改查起),直到找到满足特定条件的DB_TRX_ID, 那么这个DB_TRX_ID所在的旧记录就是当前事务能看见的最新老版本

那么这个判断条件是什么呢?

image

如上,它是一段MySQL判断可见性的一段源码,即changes_visible方法(不完全哈,但能看出大致逻辑),该方法展示了我们拿DB_TRX_ID去跟Read View某些属性进行怎么样的比较

在展示之前,我先简化一下Read View,我们可以把Read View简单的理解成有三个全局属性

整体流程

我们在了解了隐式字段undo log, 以及Read View的概念之后,就可以来看看MVCC实现的整体流程是怎么样了

整体的流程是怎么样的呢?我们可以模拟一下

image
image
image

MVCC相关问题

RR是如何在RC级的基础上解决不可重复读的?

当前读和快照读在RR级别下的区别:

表1:

在上表的顺序下,事务B的在事务A提交修改后的快照读是旧版本数据,而当前读是实时新数据400

表2:

而在表2这里的顺序中,事务B在事务A提交后的快照读和当前读都是实时的新数据400,这是为什么呢?

所以我们知道事务中快照读的结果是非常依赖该事务首次出现快照读的地方,即某个事务中首次出现快照读的地方非常关键,它有决定该事务后续快照读结果的能力

我们这里测试的是更新,同时删除更新也是一样的,如果事务B的快照读是在事务A操作之后进行的,事务B的快照读也是能读取到最新的数据的

RC,RR级别下的InnoDB快照读有什么不同?

正是Read View生成时机的不同,从而造成RC,RR级别下快照读的结果的不同

总之在RC隔离级别下,是每个快照读都会生成并获取最新的Read View;而在RR隔离级别下,则是同一个事务中的第一个快照读才会创建Read View, 之后的快照读获取的都是同一个Read View。

一文讲透 MVCC 实现原理

undo log

undo log 是 MVCC 实现的一个重要依赖,所以在详细介绍 MVCC 前,我们先来介绍 undo log 是什么。
undo log 与 redo log 一起构成了 MySQL 事务日志,并且我们上篇文章中提到的日志先行原则 WAL 除了包含 redo log 外,也包括 undo log,事务中的每一次修改,innodb 都会先记录对应的 undo log 记录。
那么 undo log 是什么呢?顾名思义,与 redo log 用于数据的灾后重新提交不同,undo log 主要用于数据修改的回滚。

与 redo log 记录的是物理页的修改不同,undo log 记录的是逻辑日志。
当 delete 一条记录时,undo log 中会记录一条对应的 insert 记录,反之亦然,当 update 一条记录时,它记录一条对应相反的 update 记录,如果 update 的是主键,则是对先删除后插入的两个事件的反向逻辑操作的记录。

image

这样,在事务回滚时,我们就可以从 undo log 中反向读取相应的内容,并进行回滚,同时,我们也可以根据 undo log 中记录的日志读取到一条被修改后数据的原值。
正是依赖 undo log,innodb 实现了 ACID 中的 C – Consistency 即一致性。

undo log 的存储与相关配置

innodb 通过段的方式来管理 undo log,每一条记录占用一个 undo log segment,每 1024 个 undo log segment 被组织为一个回滚段(rollback segment)
mysql 5.6 版本以后可以通过 innodb_undo_logs 配置项设置系统支持的最大回滚段个数,默认为 128。
通过 innodb_undo_directory 配置可以设置 undo log 存储的目录。
通过 innodb_undo_tablespaces 可以设置将 undo log 平均分配到多少个文件中,默认为 0,即全部写入同一个文件中。

这里顺便说一下,在 mysql 5.6 的早期版本及之前的版本中,并没有限制回滚段的大小,这就造成了一个非常严重的漏洞,攻击者可以通过反复更新一个字段造成 undo log 占用大量的磁盘空间,可以参看:
https://blog.jcole.us/2014/04/16/a-little-fun-with-innodb-multi-versioning/
https://bugs.mysql.com/bug.php?id=72362。

MVCC

此前的文章中,我们介绍了 mysql 事务隔离级别,其中非常粗略的介绍了 MVCC:
mysql 锁机制与四种隔离级别

MVCC 全称是 multiversion concurrency control,即多版本并发控制,是 innodb 实现事务并发与回滚的重要功能。
具体的实现是,在数据库的每一行中,添加额外的三个字段:

image

快照读与当前读

innodb 拥有一个自增的全局事务 ID,每当一个事务开启,在事务中都会记录当前事务的唯一 id,而全局事务 ID 会随着新事务的创建而增长。
同时,新事务创建时,事务系统会将当前未提交的所有事务 ID 组成的数组传递给这个新事务,本文的下面段落我们成这个数组为 TRX_ID 集合。

快照读

正如我们前面介绍的,每当一个事务更新一条数据时,都会在写入对应 undo log 后将这行记录的隐藏字段 DB_TRX_ID 更新为当前事务的事务 ID,用来表明最新更新该数据的事务是该事务。
当另一个事务去 select 数据时,读到该行数据的 DB_TRX_ID 不为空并且 DB_TRX_ID 与当前事务的事务 ID 是不同的,这就说明这一行数据是另一个事务修改并提交的。
那么,这行数据究竟是在当前事务开启前提交的还是在当前事务开启后提交的呢?

image

如上图所示,有了上文提到的 TRX_ID 集合,就很容易判断这个问题了,如果这一行数据的 DB_TRX_ID 在 TRX_ID 集合中或大于当前事务的事务 ID,那么就说明这行数据是在当前事务开启后提交的,否则说明这行数据是在当前事务开启前提交的。
对于当前事务开启后提交的数据,当前事务需要通过隐藏的 DB_ROLL_PTR 字段找到 undo log,然后进行逻辑上的回溯才能拿到事务开启时的原数据。
这个通过 undo log + 数据行获取到事务开启时的原始数据的过程就是“快照读”。

当前读

很多时候,我们在读取数据库时,需要读取的是行的当前数据,而不需要通过 undo log 回溯到事务开启前的数据状态,主要包含以下操作:

MVCC 与不可重复读、幻读的问题

不可重复读与幻读

“不可重复读”与“幻读”是两个数据库常见的极易混淆的问题。
不可重复读指的是,在一个事务开启过程中,当前事务读取到了另一事务提交的修改。
幻读则指的是,在一个事务开启过程中,读取到另一个事务提交导致的数据条目的新增或删除。

可重复读解决不可重复读与幻读问题的原理

那么,可重复读的隔离级别是否解决了不可重复读与幻读问题呢?
上面我们提到,对于正常的 select 查询 innodb 实际上进行的是快照读,即通过判断读取到的行的 DB_TRX_ID 与 DB_ROLL_PTR 字段指向的 undo log 回溯到事务开启前或当前事务最后一次更新的数据版本,从而在这样的场景下避免了可重复读与幻读的问题。
针对已存在的数据,insert 和 update 操作虽然是进行当前读,但 insert 与 update 操作后,该行的最新修改事务 ID 为当前事务 ID,因此读到的值仍然是当前事务所修改的数据,不会产生不可重复读的问题。
但如果当前事务更新到了其他事务新插入并提交了的数据,这就会造成该行数据的 DB_TRX_ID 被更新为当前事务 ID,此后即便进行快照读,依然会查出该行数据,产生幻读(其他事务插入或删除但未提交该行数据的情况下会锁定该行,造成当前事务对该行的更新操作被阻塞,所以这种情况不会产生幻读问题,有关事务间的锁,不在本篇文章的讨论范围内,接下来的文章我们会进一步讨论)

实证

我们实际来看一个例子。首先,我们创建一个表:

CREATE TABLE `test` (
  `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
  `value` int(10) unsigned NOT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8

然后我们插入三条初始数据:

INSERT INTO `test` (`value`) VALUES (1), (2), (3)

接下来我们在两个窗口中分别开启一个事务并查询出现有数据:

image

我们在其中一个事务中先更新 id 为 1 的数据,再插入一条 id 为 4 的数据,再删除 id 为 2 的数据,然后,在另一个事务中查询,可以看到此时查询出来的仍然是事务开启时的初始数据,说明当前隔离级别和场景下并没有脏读的问题存在:

image

此时,我们提交所有的修改,接着在另一个事务中查询,可以看到此时查询到的结果仍然是事务开启前的原始数据,说明当前隔离级别和场景下并没有不可重复读和幻读的问题存在:

image

那么接下来,我们在未提交的这个事务中执行一条修改,可以看到,本应在事务中只影响一行的 update 操作返回了 changed: 2,接着,我们查询结果出现了 id 为 4 的行,说明了幻读问题的存在【update当前读会读最新数据】:

image

undo log 的清理

在回滚段中,每个 undo log 段都有一个类型字段,共有两种类型:insert undo logs 和 update undo logs。
对于执行 insert 语句插入的数据,其回滚段类型为 insert undo logs,用来在事务中回滚当前的插入操作。
对于执行 delete 语句删除和 update 语句更新的数据,其回滚段类型为 update undo logs。
如果事务 rollback,innodb 通过执行 undo log 中的所有反向操作,实现事务中所有操作的回滚,随后就会删除该事务关联的所有 undo log 段。
如果事务 commit,对于 insert undo logs,innodb 会直接清除,但对于 update undo logs,只有当前没有任何事务存在时,innodb 的 purge 线程才会清理这些 undo log 段。
这里提到了 purge 线程,他是一个周期运行的垃圾收集线程,主要用来收集 undo log 段,以及已经被废弃的索引。
在事务提交时,innodb 会将所有需要清理的任务添加到 purge 队列中,可以通过 innodb_max_purge_lag 配置项设定 purge 队列的大小。
purge 线程会在周期执行时,对 purge 队列中的任务进行清理,innodb_max_purge_lag_delay 配置项说明了 purge 线程的执行周期间隔。
所以,尽量缩短使用中每个事务的持续时间,可以让 purge 线程有更大概率回收已经没有存在必要的 undo log 段,从而尽量释放磁盘空间的占用。

《高性能 MySQL》中的谬误

主页君在多年以前曾经就 MVCC 的实现阅读过相对非常权威的著作《高性能 MySQL》,其中有着下面的一段话:

image

主页君看到网上目前许许多多的博客都是按照上述文字中介绍的原理来讲述的。
但当如今主页君仔细去深究其中的原理,参阅官方文档之后,发现各版本 innodb MVCC 的原理并不是书上所描述的这样,毕竟官方文档是除源码外的第一手资料,同时,参阅一些文章贴出的源码来看,确实是按照官方文档中介绍的原理实现的,因此,本文主要参阅官方的相关源码进行详细的总结和讲述。
那么,《高性能 MySQL》中的描述是来源于哪里呢?事实上,它讲述的是 PostgreSQL 的实现方式。
与 InnoDB 类似,PostgreSQL 为每一行数据添加了 4 个额外的字段:

在每一个事务中,都维护了一个从 0 开始单调递增的命令 ID(COMMAND_ID),每当一个命令执行后,COMMAND_ID 都会自增。
当一个事务更新一条数据,PostgreSQL 会创建一条新的记录,并将新的记录的 xmin 更新为当前事务的事务 ID。
当一个事务删除一条数据,PostgreSQL 不会创建一条新纪录,而是将该行记录的 xmax 更新为当前事务的 ID。
因为 cmin 和 cmax 的记录,PostgreSQL 可以以此排列出同一事务中所有更新、删除操作的先后。
这样,在一个事物读取数据时,只需要读取 xmin 小于当前事务 ID 且 xmin 不在 TRX_ID 集合中的数据即可实现快照读的功能。

优缺点

PostgreSQL 的 MVCC 实现与 innodb 的 MVCC 实现相比,最大的优点在于其查询无需解析 undo log 进行回溯。
对于数据回滚,只需要删除所有 xmin 为当前事务 ID 的记录,清除所有 xmax 为当前事务 ID 的 xmax 字段即可。
但其缺点也很明显,那就是随着更新操作,数据库中会产生大量的额外数据,这些数据同时也对数据库其他的操作例如索引的建立等都带来了额外的性能消耗。

image

MVCC简介

MVCC是一种多版本并发控制机制。

MVCC是为了解决什么问题?

MVCC实现

MVCC是通过保存数据在某个时间点的快照来实现的. 不同存储引擎的MVCC. 不同存储引擎的MVCC实现是不同的,典型的有乐观并发控制和悲观并发控制.

MVCC 具体实现分析

下面,我们通过InnoDB的MVCC实现来分析MVCC使怎样进行并发控制的.
InnoDB的MVCC,是通过在每行记录后面保存两个隐藏的列来实现的,这两个列,分别保存了这个行的创建时间,一个保存的是行的删除时间。这里存储的并不是实际的时间值,而是系统版本号(可以理解为事务的ID),没开始一个新的事务,系统版本号就会自动递增,事务开始时刻的系统版本号会作为事务的ID.下面看一下在REPEATABLE READ隔离级别下,MVCC具体是如何操作的.

简单的小例子

create table yang(
id int primary key auto_increment,
name varchar(20))

INSERT

InnoDB为新插入的每一行保存当前系统版本号作为版本号.
第一个事务ID为1;

start transaction;
insert into yang values(NULL,'yang') ;
insert into yang values(NULL,'long');
insert into yang values(NULL,'fei');
commit;

对应在数据中的表如下(后面两列是隐藏列,我们通过查询语句并看不到)

SELECT

InnoDB会根据以下两个条件检查每行记录:
a.InnoDB只会查找版本早于当前事务版本的数据行(也就是,行的系统版本号小于或等于事务的系统版本号),这样可以确保事务读取的行,要么是在事务开始前已经存在的,要么是事务自身插入或者修改过的.
b.行的删除版本要么未定义,要么大于当前事务版本号,这可以确保事务读取到的行,在事务开始之前未被删除.
只有a,b同时满足的记录,才能返回作为查询结果.

DELETE

InnoDB会为删除的每一行保存当前系统的版本号(事务的ID)作为删除标识.
看下面的具体例子分析:
第二个事务,ID为2;

start transaction;
select * from yang;  //(1)
select * from yang;  //(2)
commit;

假设1

假设在执行这个事务ID为2的过程中,刚执行到(1),这时,有另一个事务ID为3往这个表里插入了一条数据;
第三个事务ID为3;

start transaction;
insert into yang values(NULL,'tian');
commit;

这时表中的数据如下:

然后接着执行事务2中的(2),由于id=4的数据的创建时间(事务ID为3),执行当前事务的ID为2,而InnoDB只会查找事务ID小于等于当前事务ID的数据行,所以id=4的数据行并不会在执行事务2中的(2)被检索出来,在事务2中的两条select 语句检索出来的数据都只会下表:

假设2

假设在执行这个事务ID为2的过程中,刚执行到(1),假设事务执行完事务3后,接着又执行了事务4;
第四个事务:

start   transaction;  
delete from yang where id=1;
commit;

此时数据库中的表如下:

接着执行事务ID为2的事务(2),根据SELECT 检索条件可以知道,它会检索创建时间(创建事务的ID)小于当前事务ID的行和删除时间(删除事务的ID)大于当前事务的行,而id=4的行上面已经说过,而id=1的行由于删除时间(删除事务的ID)大于当前事务的ID,所以事务2的(2)select * from yang也会把id=1的数据检索出来.所以,事务2中的两条select 语句检索出来的数据都如下:

UPDATE

InnoDB执行UPDATE,实际上是新插入了一行记录,并保存其创建时间为当前事务的ID,同时保存当前事务ID到要UPDATE的行的删除时间.

假设3

假设在执行完事务2的(1)后又执行,其它用户执行了事务3,4,这时,又有一个用户对这张表执行了UPDATE操作:
第5个事务:

start  transaction;
update yang set name='Long' where id=2;
commit;

根据update的更新原则:会生成新的一行,并在原来要修改的列的删除时间列上添加本事务ID,得到表如下:

继续执行事务2的(2),根据select 语句的检索条件,得到下表:

还是和事务2中(1)select 得到相同的结果.

© 版权声明
THE END
喜欢就支持一下吧
点赞1赞赏 分享
评论 抢沙发
头像
欢迎您留下宝贵的见解!
提交
头像

昵称

取消
昵称表情代码图片

    暂无评论内容